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The analytical conditions for the applicability of a Non-linear Superposition Technique
(NST) are established by using the Normal Form Method (NFM). The superposition
technique represents the extension of modal analysis to weakly non-linear vibration
systems. In this paper it is shown that the NST leads to a non-uniform perturbation
expansion for the solution of dynamical systems when some special non-linear terms are
present in the dynamical system. An analytical proof for general dynamical systems and
a numerical application to a simple mechanical system is included in the paper.
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1. INTRODUCTION

The Non-linear Superposition Technique [1] (NST) is based upon the concept of invariant
manifolds of a dynamical system, called also normal modes in structural dynamics. The
first important study on non-linear normal modes is due to Rosenberg [2] in 1966. In the
past 30 years there was a lack of interest on normal modes, but recently the activity in
this field has grown noticeably. Indeed, many papers have appeared in the literature about
normal modes for both weakly and strongly non-linear systems [3, 4], matching techniques
for general discrete systems [5], continuous systems [6, 7] and discrete systems with internal
resonances [8]. Furthermore, Shaw and Pierre [1] presented a paper focused on a new
definition of normal modes in terms of invariant manifolds and developed a method to
study the dynamics of weakly non-linear systems. The idea was very appealing, and similar
to modal analysis because it consists of uncoupling the system equations through a special
projection: in other words, this technique could be considered as an extension of modal
analysis to weakly non-linear systems.

In this paper the local analytical solution of non-linear dynamical systems, obtained by
the NST, is compared with that obtained by a perturbation method, i.e., the Normal Form
Method (NFM) [9–11]. The NST was proposed for structural dynamical applications and
good agreements with solutions obtained by the direct numerical integration were achieved
for some mechanical applications [1]. In this paper the applicability of the non-linear
superposition technique based on the use of the invariant manifolds is investigated: the
NFM is used to quantify the limitations of the non-linear modal superposition for general
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are determined and the role of special terms, here referred as mixed-coupling terms, is
discussed.

The theoretical bases of the non-linear superposition and the normal form methods are
presented and compared in sections 2 and 3 respectively; in section 4 the differences
between these approaches are illustrated by three simple mechanical examples. Finally in
section 5 some conclusions are outlined.

2. NORMAL FORM METHOD

In this section a brief introduction to the normal form method is presented (see reference
[11] for details), with emphasis on the evaluation of the portion of the dynamical system
(referred to as ‘‘non-linear mixed terms’’ in the following) for which the non-linear
superposition does not work.

Consider a general mechanical system

Mẍ+Cẋ+Kx+n(ẋ, x)=0, (1)

where M, C and K are the mass, damping and stiffness matrices respectively, whereas
n(ẋ, x) represents non-linear polynomial terms. Upon introducing the state space vector
z=[ẋT, xT]T, a 2N-dimensional set of equations obtained,

ż=Az+N(z), (2)

where

N(z)=6−M−1n(z)
0 7.

The matrix A can be diagonalized by using the co-ordinate transformation z=Uj, where
U is the eigenvector matrix and

j� =Lj+ f
 (j), (3)

L being the diagonal matrix that contains the complex eigenvalues li of the system, and
f
 (j)=U−1N(Uj). It must be pointed out that, if the first order dynamical system given
by equation (2) is derived from the mechanical system described by equation (1) and there
is not supercritical damping then all the eigenvalues (and the corresponding eigenvectors)
are complex and conjugate. Now, one can order the eigenvalues and the eigenvectors as
follows: li = l�i+N , u(i) = ū(i+N), where li is the ith eigenvalue, u(i) is the ith eigenvector and
the superscript(−) indicates the complex conjugate; this ordering implies that ji = j�i+N

and, if f
 i is an analytic function, f
 i = f
�i+N corresponds to the statement that the first N
equations are the complex conjugates of the second N in this way the initial
2N-dimensional real system is transformed into a 2N-dimensional complex system:
however, one could consider the N-dimensional complex space given by ji (i=1, . . . , N),
because the remaining part can be trivially obtained through the complex conjugate
operation.

Note that the generic component of f
 can be rewritten in a power series;

f
 i = s
2N

j,k=1

f
 i, jkjjjk + s
2N

j,k,r=1

f
 i,jkrjjjkjr +· · · , i=1, . . . , 2N, (4)

where, e.g., f
 i, jk = 1
21

2f
 i /1jj 1jk =j=0, because f
 is an analytic function of j.
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Now it is convenient to decompose the f
 i into two parts,

f
 i (j)= s
2N

k=1

f
 'ik (jk , j�k )+ f
 0i (j), (5)

where we refer to a2N
k=1 f
 'ik as unmixed-coupling terms and f
 0i as mixed-coupling terms.

Specifically, we denote by unmixed-coupling terms the unmixed polynomials of degree m
(e.g., for m=3, x3

1 , x3
2 , etc.) and by mixed-coupling terms the mixed polynomials of degree

m (e.g., for m=3, x1x2
2 , x2

1x2, etc.). Furthermore, the unmixed terms may be expressed as
a sum (see equation (5)) in k of a generic f
 'ik , where each term is the portion of f
 �i that
contains only the two space state variables jk and j�k . It is straightforwardly observed that
f
 0i = f
 i −a2N

k=1f
 'ik . The notation mixed implies that the term contains more than one
variable, for any power combination of the simple factor of the monomial. As will be
shown later, the presence of the mixed-coupling terms does not allow non-linear modal
superposition.

Next, in order to obtain a perturbative solution for the ordinary differential equations
by means of the NFM, it is necessary to introduce an ordering real parameter o, as

j= o1/(m−1)z,

where m represents the lower degree of the series expansion for f
 . Then equation (3)
becomes

z� =Lz+ o−1/(m−1)f
 (o1/(m−1)z, o1/(m−1)z�)=Lz+ of(z, z�)+O(o2), (6)

z�� =L�z�+ o−1/(m−1)f
�(o1/(m−1)o, o1/(m−1)z�)=L�z�+ o f�(z, z�)+O(o2). (7)

For example, if f
 = x3, it follows that m=3, j=zoz and (zo)−1 (zo)3z3 = oz3.
One can now apply the NFM to the previous system. The method is based on a

non-linear transformation of co-ordinates (near identity transformation) that leads to a
simpler form of the equations, i.e., the so called normal forms. The near identity
transformation (also known as the Lie transformation [11, 12]) is

zi = hi + ohi (h, h̄), i=1, . . . , N, (8)

where hi is an unknown non-linear (e.g., polynomial) function of h and h̄ and the complex
conjugate set of equations is not explicitly considered. The same kind of decomposition
given by equation (5) can be obtained for the above transformation law: hi =akh'ik + h0i .
Consequently, by using equations (5), (6) and (8) and searching for the simplest form of
the transformed problem, (i.e., satisfying the resonance condition [11]) the normal form
equations are obtained;

ḣi = lihi + ogi (h, h̄) or ḣi = lihi + o[g'ii (hi , h̄i )+ g0i (h, h̄)], (9)

where gi = g'ii + g0i represent the so-called secular terms (the Einstein notation for repeated
indices is not used). Note that the linear portion of the normal forms corresponds to that
of the original problem. Furthermore, combining equations (6), (8) and (9), one obtains
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the so-called ‘‘homology’’ relations [11]

g'ii + g0i + s
2N

k=1
$1h'ik
1hk

lkhk +
1h'ik
1h̄k

l�kh̄k − lih'ik%+ s
2N

j=1$1h0i
1hj

ljhj +
1h0i
1h̄j

l�jh̄j%
− lih0i − s

2N

k=1

f 'ik − f 0i =0: (10)

i.e., a relationship that correlates the terms of the old problem f 'ik and f 0i with those of
the new one g'ii and g0i through the unknown non-linear transformation h'ik and h0i .
Choosing g'ii and g0i as resonant terms of the original problem (i.e., the resonant part of
f 'ik and f 0i ), one determines the non-linear transformation terms h'ik and h0i [11, 12]. Note
that, if the mixed-coupling terms are not present, the previous equation (10) can be reduced
to

dikg'ii +
1h'ik
1hk

lkhk +
1h'ik
1h̄k

l�kh̄k − lih'ik − f'ik =0, i=1, . . . , N, k=1, . . . , N, (11)

each term in the first summation of equation (10) being independent of the other. In the
next section the above equation is compared with the one obtained by the NST approach.

3. NON-LINEAR SUPERPOSITION METHOD

The non-linear superposition method is based on the use of invariant manifolds of
dynamical systems and a special projection on it: i.e., a non-linear transformation that
uncouples the equations. A method for performing the uncoupling was developed in
reference [1] and it is briefly outlined in the following. If bifurcations and internal
resonances are avoided, the mth manifold is two-dimensional and tangent to the mth
eigenspace (see references [1, 14]). In the following, the NST is presented with
consideration of the complex state space variables, in order to compare this approach with
the NFM outlined in the previous section (in Appendix A a real domain approach to NST
is also presented).

Consider a particular motion that belongs to a two-dimensional invariant manifold, so
that the state vector z depends on two variables as

z=Z(u, v), (12)

Figure 1. The invariant manifold.
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where u and v are the material co-ordinates of the manifold. It is worth pointing out that
an invariant manifold is a regular surface tangent at the fixed point to the corresponding
eigenspace. If one would describe the mth manifold by using the co-ordinate variables (zi ),
then the manifold can be parametrized in a unique way as (See Figure 1)

u0 zm, v0 z�m, (13)

where the index indicates that the mth manifold is considered (the motivation for the use
of the conjugate co-ordinate has been described in the previous section).

Using equations (12 and 13) one can write the motion equations as follows:

z� i (u, v)=
1Zi (u, v)

1u
u̇+

1Zi (u, v)
1v

v̇= liZi (u, v)+ ofi Z(u, v)). (14)

Considering the parametrization of u and v and the equation of motion for the mth
co-ordinate, one obtains the manifold equations:

1Zi

1zm
(lmzm + ofm )+

1Zi

1z�m
(l�mz�m + o f�m )= liZi + fi , i, m=1, . . . , N. (15)

Considering also that the manifold is tangent to the corresponding eigenspace [14], it can
be described through a vector function (Z) that does not contains linear terms (see
Appendix B). Therefore one can write

z(m)
i = oH(m)

i (z(m)
m , z�(m)

m ), i=1, . . . , N, i$m, (16)

where the parametric variables (u, v) have been replaced by (z(m)
m , z�(m)

m ). The symbol H(m)
i

represents a polynomial function of degree e 2 and the superscript (m) indicates the mth
manifold. The dynamics on the manifold is described by (see equation 6)

z� (m)
m = lmz(m)

m + of 'mm (z(m)
m , z� (m)

m )+O(o2), (17)

where

of'mm (z(m)
m , z�(m)

m )+O(o2)= ofm (oH(m)
1 , . . . , z(m)

m , . . . , z(m)
N+m , . . . , oH(m)

2N )

and the generating equations for the manifolds (see equation (15)) are

1H(m)
i

1z(m)
m

lmz(m)
m +

1H(m)
i

1z�(m)
m

l�mz�(m)
m − liH(m)

i − f 'im =0, (18)

which clearly implies (see the homology equation (11))

H(m)
i 0 h'im, i$m, (19)

if no mixed-coupling terms are present.
In reference [1] equation (17) was numerically integrated and the result was compared

with the solution obtained by the direct integration of the initial equations. Alternatively,
equation (17) can be studied through a perturbation technique. When using a first order
perturbation procedure, the solution will be within the order of approximation considered
to obtain the manifolds (see equation (18)), i.e., the error is bounded at the second order
and the present analysis is still valid. Indeed, our task is to show that the NST may lead
to a non-uniform first order expansion; then, using the NFM to analyze equation (17),
one obtains

z(m)
m = h(m)

m + opm (h(m)
m , h̄(m)

m ), ḣ(m)
m = lmh(m)

m + oqm (h(m)
m , h̄(m)

m ), (20, 21)
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where pm is given by the relationship

qm +6 1pm

1h(m)
m

lmh(m)
m +

1pm

1h̄(m)
m

l�mh̄(m)
m 7− lmpm − f 'mm =0. (22)

Comparing equation (11), when i, k=m, with equation (22), one obtains

pm 0 h'mm, qm 0 g'mm (23)

In reference [1] it was assumed that the general motion is obtained as the superposition
of motions evolving on manifolds; such superposition is given by

zi = z(i)
i + s

N

m=1, m$ i

oH(m)
i (z(m)

m , z�(m)
m ), (24)

where z(m)
m is obtained from equation (17).

Use of equations (19), (20), (21), (23) and (24) shows that the method investigated does
not consider the contributions h0i of the non-linear transformation given by equation (24)
and g0i of the normal form equations: i.e., an O(o) contribution leads to an O(o) error if
the f 0i are present. This fact shows the fundamental role of mixed-coupling terms f 0i on
the applicability of the NST. It is worth pointing out that the lost contributions are of
the same order as the corrections.

4. SOME APPLICATIONS

In this section three cases concerning two-dimensional systems are considered. The first
is an example for which the NST cannot be applied at all. In the second example, a physical
system is analyzed and numerical simulations are performed to show quantitatively and
qualitatively the error arising in the application of the NST. Finally, the third case is an
example in which the NST gives the same result as the NFM.

4.1.        

Consider a two-dimensional Hamiltonian dynamical system with the potential energy.
E= 1

2v
2
1x2

1 + 1
2v

2
2x2

2 + o1
2 K3x2

1x2
2 ). Consequently, the restoring forces are f1 = (k1 + ok3x2

2 )x1,
and f2 = (v2

2 + ok3x2
1 )x2, and the governing equations are

ẍ1 +v2
1x1 + ok3x1x2

2 =0, ẍ2 +v2
2x2 + ok3x2x2

1 =0. (25)

Such a system might represent a spring-mass system with varying stiffness, obtained, for
example, by a control system. Here it is shown that the NST completely fails the analysis
because it does not furnish any correction to the linear model. Indeed, in terms of complex
co-ordinates the system given by equation (25) becomes

z� 1 = jv1z1 − o
k3

2jv1
(z1 + z�1)(z2 + z�2)2, z� 2 = jv2z2 − o

k3

2jv2
(z2 + z�2)(z1 + z�1)2 (26)

where xi = zi + z�i and ẋi = jvi(zi − z�i ). The first non-linear mode of the system is given by

z(2)
1 = oH(1)

2 (z(1)
1 , z�(1)

1 ) (27)

where

z� (1)
1 = jv1vz(1)

1 ,+O(o2),
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Figure 2. Behaviour of the mean error. (a) First degree of freedom; (b) second degree of freedom. ——, Normal
form; - - - -, non-linear superposition.

whereas H(1)
2 is given by

1H(1)
2

1z(1)
1

jv1z
(1)
1 +

1H(1)
2

1z�(1)
1

(−jv1)z�(1)
1 − jv2H(1)

2 +O(o2)=0

i.e., cH(1)
2 0 0. Therefore, in this case the non-linear effect is completely lost by the

procedure. On the other hand, its effect is not negligible because, applying the NFM to
equation (26), one obtains

ḣ1 = jv1h1 + o
jk3

2v1
h1h2h̄2, ḣ2 = jv2h2 + o

jk3

2v2
h2h1h̄1, (28, 29)

Using the polar form hi = aiej(vi t+ ui(t)), one finds the non-linear frequencies

ṽ1 =v1 + o (k3/2v1)a2
2, ṽ2 =v2 + o (k32v2)a2

1,

and, successively, non-trivial non-linear transformations for hi. Therefore there is a
non-linear O(1) effect on the frequencies and higher order contributions given by the
transformations hi.

4.2.         

Consider a two-dimensional Hamiltonian dynamical system with potential energy
E= 1

2v
2
1x2

1 + 1
2v

2
2x2

2 + o(1
4k11x4

1 + 1
4k22x4

2 − 1
2k12x2

1x2
2 ). The resulting dynamical system is

ẍ1 +v2
1x1 + o(k11x3

1 − k12x1x2
2 )=0, ẍ2 +v2

2x2 + o(k22x3
2 − k12x2x2

1 )=0. (30)

Such a system might represent a mass connected with two orthogonal springs. Here
the terms k11x3

1 and k22x3
2 are unmixed terms, while k12x1x2

2 and k12x2x2
1 are the

mixed-coupling terms. In Figure 2 is shown the behaviour of the mean error of the NST
and NFM versus o; the continuous line referes to the NST solution while the dotted line
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refers to the NFM solution. It can be seen that the first method leads to an error behaviour
that is not a quadratic function of o; i.e., an O(o2) error. In fact, for o:0 the NST error
is not tangent to the horizontal axis. In Figure 3 is shown in the time history of the two
degrees of freedom; here the separation of the NST from the numerical reconstruction is
evident. Finally, in Figure 4 the previous signal is shown in the frequency domain: note
that part of the high frequency behaviour is lost when using the NST.

4.3.       

Consider a two-dimensional dynamical system governed by the equations

ẍ1 +v2
1x1 + o(kx3

1 + cx3
2 )=0 ẍ2 +v2

2x2 + o(kx3
2 + cx3

1 )=0.

Note that no elastic potential energy can correspond to the above system; however, it could
be realized through a control system. The first order form is

z� 1 = jv1z1 + o(j/2v1) [k(z1 + z�1)3 + c(z2 + z�2)3], (31)

z� 2 = jv2z2 + o(j/2v2) [k(z2 + z�2)3 + c(z1 + z�1)3], (32)

where xi = zi + z�i and xi =jvi (zi − z�i ).

Figure 3. A comparison between the NFM (- - - -), NST (· · · · ) and numerical methods (——).
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Figure 4. A comparison between the NFM (- - - -), NST (– · – · –) and numerical methods (——).

Now applying the NST, one finds the first normal mode to be

z� (1)
1 = jv1z1 + o

j
2v1

[k(z(1)
1 + z�(1)

1 )3 + c(oH(1)
2 + oH� (1)

2 )3]= jv1z1 + o
j

2v1
[k(z(1)

1 + z�(1)
1 )3], (33)

where

H(1)
1 =L(1)

1 z(1)3
1 +L(1)

2 z(1)2
1 z� (1)

1 +L(1)
3 z(1)

1 z�(1)2
1 +L(1)

4 z�(1)3
1 ,

L(1)
1 =

c
2v2(3v1 −v2)

, L(1)
2 =

3c
2v2(v1 −v2)

,

L(1)
3 =−

3c
2v2(v1 +v2)

, L(1)
4 =−

c
2v2(3v1 +v2)

.
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Applying the NFM to equation (33) yields

z(1)
1 = j(1)

1 + op(1)
1 ,

p(1)
1 =G(1)

1 j(1)3
1 +G(1)

2 j(1)2
1 j�(1)

1 +G(1)
3 j(1)

1 j�(1)2
1 +G(1)

4 j�(1)3
1 ,

j� (1)
1 = jv1j

(1)
1 + jo(3k/2v1) j(1)2

1 j�(1)
1 , (34)

G(1)
1 = (k/4v2

1), G(1)
2 =0, G(1)

3 = −(3k/4v2
1), G(1)

4 =−(k/8v2
1 ).

The first mode is given by

z(1)
1 = j(1)

1 + op(1)
1 , z(1)

2 = oH(1)
2 . (35)

After a suitable change of indices in the above expressions, the second mode can be
obtained and the final modal superposition is given by

z1 = z(1)
1 + z(2)

1 , z2 = z(1)
2 + z(2)

2 . (36)

Consider the normal form for equation (31):

j� 1 = jv1j1 + jo(3k/2v1) j2
1j�1, j� 2 = jv2j2 + jo(3k/2v2)j2

2j�2 (37, 38)

Note that equation (37) is identical to the first modal equation (see equation (34)) and it
can be shown that equation (38) is equal to the second modal equation. Furthermore, the
near identity transformation is given by

z1 = j1 + oh1, z2 = j2 + oh2, (39)

where

h1 = a1j
3
1 + a2j

2
1j�1 + a3j1j�2

1 + a4j�3
1 + a5j

3
2 + a6j

2
2j�2 + a7j2j�2

2 + a8j�3
2, (40)

h2 = b1j
3
1 + b2j

2
1j�1 + b3j1j�2

1 + b4j�3
1 + b5j

3
2 + b6j

2
2j�2 + b7j2j�2

2 + b8j�3
2. (41)

The above coefficients can be obtained by using the homology equation (11); comparing
the NFM solution with the NST solution one has

a1 =G(1)
1 , a2 =G(1)

2 , a3 =G(1)
3 , a4 =G(1)

4 , (42)

b1 =L(1)
1 , b2 =L(1)

2 , b3 =L(1)
3 , b4 =L(1)

4 , (43)

Similar relationships hold for the other constants ai, bi, G( j )
i , and L( j )

i . Therefore, in this
case NST and NFM yield the same result.

5. CONCLUSION

In the present paper the Normal Form Method (NFM) has been used to investigate the
mathematical conditions of the applicability of a Non-linear Superposition Technique
(NST). It was shown that the blind use of the NST may lead to an asymptotic expansion
of the solution which is not uniformly valid. This is due to the presence of some special
terms of the dynamical system, called the mixed-coupling terms. These terms are clearly
identified in this paper. Indeed, the possibility of application of the NST is connected with
the nature of the non-linearities. The range of applicability seems to be lower whenever
the dimension of the problem is increased: in fact, in this case it is more likely that there
exist the so-called mixed-coupling terms, which are responsible for the failure of the NST.
This issue affects the general applicability of NST to N-d.o.f. systems although such
applicability to N-d.o.f. systems would be the main objective of this methodology.



  -  13

REFERENCES

1. S. W. S and C. P 1993 Journal of Sound and Vibration 164, 85–124. Normal modes for
non-linear vibratory systems.

2. R. M. R 1966 Advances in Applied Mechanics 9, 155–242. On non-linear vibrations of
systems with many degrees-of freedom.

3. A. F. V and R. H. R 1992 International Journal of Non-Linear Mechanics 27, 861–874.
Normal modes and global dynamics of a two-degree of freedom nonlinear system—I: low
energies.

4. A. F. V and R. H. R 1992 International Journal of Non-Linear Mechanics 27, 875–888.
Normal modes and global dynamics of a two-degree of freedom nonlinear system—II: high
energies.

5. Y. V.M 1995 Journal of Sound and Vibration 182, 577–588. Matching of local expansions
in the theory of nonlinear vibrations.

6. A. H. N and S. N 1994 Journal of Vibration and Acoustics 116, 129–136. On
non-linear modes of continuous systems.

7. S. W. S and C. P 1994 Journal of Sound and Vibration 169, 319–347. Normal modes
of vibration for non-linear continuous systems.

8. A. H. N, C. C and S. N 1994 Journal of Vibration and Control. On nonlinear
normal modes of systems with internal resonance.

9. V. I. A 1978 Mathematical Methods of Classical Mechanics. New York Springer-Verlag.
10. L. J and C. H. L 1991 Journal of Sound and Vibration 149, 429–459. Analysis

of non-linear dynamical systems by Normal Form Theory.
11. A. H. N 1993 Method of Normal Forms. New York: John Wiley.
12. L. M, F. Mastroddi  M. C 1995 Nonlinear Dynamics 7, 403–428. Lie

transformation method for dynamical systems having chaotic behaviour.
13. A. H. N 1973 Perturbation Methods. New York: John Wiley.
14. J. G and P. H 1983 Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields. New York: Springer-Verlag.

APPPENDIX A: THE REAL DOMAIN APPROACH FOR THE NST

Consider the mechanical system given by equation (1) and its state space representation

ẋ= y, ẏ= f (x, y), (A1)

where in f both linear and non-linear contributions are included. Then, consider a
particular motion belonging to a two-dimensional invariant manifold

x=X(u, v), y=Y(u, v). (A2)

Impose the conditions that u= x1 and v= y1. Upon using equations (A1) and (A2), the
generating functions for the manifolds are found to be

X,uv+X,v f1 =Y, Y,uv+Y,v f1 = f, (A3)

where f1 = f1(X1(u, v), . . . , Y1(u, v), . . . ) and e.g., X,u = 1X/1u. By expanding X, Y, and
f as power series in u and v (e.g., X(m) =X(m)

0 +X(m)
1 + . . . ) one obtains a cascade of

equations that allows one to obtain manifolds. It must be pointed out that at the first order
this procedure gives linear invariant manifolds: i.e., the linear normal modes. On the other
hand, the equations to be solved at the first order are non-linear (see reference [1] for
details), whereas the successive orders are governed by linear equations. The global
dynamics is then rebuilt by a simple superposition, upon considering the state vector for
a manifold:

z(m) = [x(m)T
1 , · · · , x(m)T

N · · · , y(m)T
1 , y(m)T

N ]T
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The superposition is then performed by writing

z= s
N

m=1

(Z(m)
0 +Z(m)

1 + . . . ).

The non-linear transformation can be inverted in a perturbation form, obtaining

u(1)

u(2)

g
G

G

G

G

F

f

· h
G

G

G

G

J

j

=S0(z)+S1(z)+ . . . .
v(1)

v(2)

·

Then the initial conditions can be projected into the ‘‘modal basis’’ and the dynamics can
be studied easily by a set of ‘‘uncoupled’’ equations.

APPENDIX B: TANGENCY OF THE INVARIANT MANIFOLDS VERSUS EIGENSPACE

The tangency of the invariant manifolds to the corresponding eigenspaces is briefly
shown in the present appendix. If one separates the linear and the non-linear part of Z,
by considering a series expansion, one obtains

K=A6uv7+H,

where

a1 b1

· ·
A=G

G

G

K

k

· · G
G

G

L

l
· ·

a2N b2N

and H contains the higher orders. If one analyzes the system in a perturbation form, at
the order O(1) one obtains

O(1): 6zmailm + z�mbil�m = zmaili + z�mbili

z�māil�m + zmbilm = z�māil�i + zmb�il�i7
which implies

a1(lm − li )=0c ai =0 if li $ lm,

bi (l�m − li )=0c bi =0 if li $ l�m. (B1)

It follows that, once one assumes i$m (that is enough to satisfy equation (B1) if no
internal resonances are present), the linear part of Z can be eliminated.


